Sravanti Uppaluri

Areas of Interest & Expertise

  • Developmental Biology
  • Biophysics and Quantitative Biology
  • Soft Matter


My training and research background span biology, bioengineering and biophysics — my undergraduate education was in biology at the McMaster University, Canada. Subsequently, I completed a masters in bioengineering at the University of Toronto. During my PhD at the Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany, I used ideas and tools from soft condensed matter physics to understand the motility and rheology of unicellular parasites. Following which, I performed research at Princeton University as a postdoctoral fellow in developmental biology.

At Azim Premji University, I work primarily with undergraduate students to pursue questions that are broadly in the areas of developmental and regenerative biology. We conduct experiments to ask how organisms establish a body plan by cell sorting, what kinds of environments promote growth and regeneration and how interspecies interactions influence individual development and populations. 



Journal Articles

  • Shivers J, Uppaluri S, Brangwynne CP, Microfluidic immobilization and subcellular imaging of developing Caenorhabditis elegans. Microfluidics and Nanofluidics, (in Press) 2017 **Work with Undergraduate Mentee 
  • Thutupalli S*, Uppaluri S*, Constable G, Levin S, Stone H, Tarnita C, Brangwynne CP, Farming and Public Goods Production in C elegans, PNAS 114(9):2289 – 2294, 2017 *Equal contribution
  • Uppaluri S, Weber, SC, and Brangwynne, CP. Hierarchical size scaling during multicellular growth and development, Cell Reports, 345(17), 2016
  • Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proceedings of the Royal Society B. 282: 201512832015
  • Gilpin W, Uppaluri S, Brangwynne CP. (2015, Apr 21). Worms under pressure: bulk mechanical properties of C. elegans are independent of the cuticle. Biophysical Journal. 108(8):1887- 98. **Work with Undergraduate Mentee 
  • Hochstetter A, Stellamanns E, Deshpande S, Uppaluri S, Engstler M, Pfohl T(2015). Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab Chip(15):1961 – 1968
  • Stellamanns E, Uppaluri S, Hochstetter A, Heddergott N, Engstler M, Pfohl T. ( 2014, Oct 1). Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei”. Scientific Reports, 4(6515).
  • Heddergott N, Krueger N, Wei A, Stellamanns E, Uppaluri S, Pfohl T, Engstler M. Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream. PLoS Pathogens, 8(11): e10030232012
  • Uppaluri S, Heddergott N, Stellamanns E, Herminghaus S, Engstler M, Pfohl T. (Sep 19, 2012). Flow loading induces oscillatory trajectories in bloodstream parasites. Biophysical Journal. 103(6):1162 – 9
  • Uppaluri S, Nagler J, Stellamanns E, Heddergott N, Herminghaus S, Engstler M, Pfohl T. Impact of microscopic motility on the swimming behaviour of parasites: stiffer trypanosomes are more directional. PLoS Computational Biology, 7(6): e1002058, 2011.

Featured article

Zaburdaev V, Uppaluri S, Friedrich R, Engstler M, Pfohl T, Stark H. (2011 , May)Langevin dynamics deciphers the motility pattern of swimming parasites. Physical Review Letters, 106(20), p. 208103, .

Book Chapter

Engstler M, Heddergott N, Krger T, Stellamanns E, Uppaluri S, Pfohl T. (2012). African Trypanosomes Are A Model System For Functional Analysis Of Microbial Motility. In Nature Inspired Fluid Mechanics, edited by C.Tropea and H Bleckmann, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 119, 43 – 61.