Sravanti Uppaluri
Areas of Interest & Expertise
- Developmental Biology
- Biophysics and Quantitative Biology
- Soft Matter
Biography
My training and research background span biology, bioengineering and biophysics — my undergraduate education was in biology at the McMaster University, Canada. Subsequently, I completed a masters in bioengineering at the University of Toronto. During my PhD at the Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany, I used ideas and tools from soft condensed matter physics to understand the motility and rheology of unicellular parasites. Following which, I performed research at Princeton University as a postdoctoral fellow in developmental biology.
At Azim Premji University, I work primarily with undergraduate students to pursue questions that are broadly in the areas of developmental and regenerative biology. We conduct experiments to ask how organisms establish a body plan by cell sorting, what kinds of environments promote growth and regeneration and how interspecies interactions influence individual development and populations.
Courses
Discover Biology
A course for non-biology majors to explore the wide ranging relevance of the study of biology in our everyday lives.
Cell and Developmental Biology
Looking at the molecular components of cells.
Calculus for Biologists
Understanding calculus for a study of biological systems.
Biology Research Seminar
A guided self-study around conceptual and analytical abilities as well as writing and reading that is necessary for the field of biology.
Introduction to Biophysics
Explore this new and exciting area of research in which physicists and biologists work together in interdisciplinary ways.
Introduction to Genetics
A study of one of the cornerstones of modern biology and the life sciences.
Introduction to Biology I
How does life work? Answers from molecular, cellular and evolutionary perspectives.
Publications
Journal Articles
- Shivers J, Uppaluri S, Brangwynne CP, Microfluidic immobilization and subcellular imaging of developing Caenorhabditis elegans. Microfluidics and Nanofluidics, (in Press) 2017 **Work with Undergraduate Mentee
- Thutupalli S*, Uppaluri S*, Constable G, Levin S, Stone H, Tarnita C, Brangwynne CP, Farming and Public Goods Production in C elegans, PNAS 114(9):2289 – 2294, 2017 *Equal contribution
- Uppaluri S, Weber, SC, and Brangwynne, CP. Hierarchical size scaling during multicellular growth and development, Cell Reports, 345(17), 2016
- Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proceedings of the Royal Society B. 282: 20151283, 2015.
- Gilpin W, Uppaluri S, Brangwynne CP. (2015, Apr 21). Worms under pressure: bulk mechanical properties of C. elegans are independent of the cuticle. Biophysical Journal. 108(8):1887- 98. **Work with Undergraduate Mentee
- Hochstetter A, Stellamanns E, Deshpande S, Uppaluri S, Engstler M, Pfohl T(2015). Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab Chip(15):1961 – 1968,
- Stellamanns E, Uppaluri S, Hochstetter A, Heddergott N, Engstler M, Pfohl T. ( 2014, Oct 1). Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites “Trypanosoma brucei brucei”. Scientific Reports, 4(6515).
- Heddergott N, Krueger N, Wei A, Stellamanns E, Uppaluri S, Pfohl T, Engstler M. Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream. PLoS Pathogens, 8(11): e1003023, 2012.
- Uppaluri S, Heddergott N, Stellamanns E, Herminghaus S, Engstler M, Pfohl T. (Sep 19, 2012). Flow loading induces oscillatory trajectories in bloodstream parasites. Biophysical Journal. 103(6):1162 – 9.
- Uppaluri S, Nagler J, Stellamanns E, Heddergott N, Herminghaus S, Engstler M, Pfohl T. Impact of microscopic motility on the swimming behaviour of parasites: stiffer trypanosomes are more directional. PLoS Computational Biology, 7(6): e1002058, 2011.
Featured article
Zaburdaev V, Uppaluri S, Friedrich R, Engstler M, Pfohl T, Stark H. (2011 , May)Langevin dynamics deciphers the motility pattern of swimming parasites. Physical Review Letters, 106(20), p. 208103, .
Book Chapter
Engstler M, Heddergott N, Krger T, Stellamanns E, Uppaluri S, Pfohl T. (2012). African Trypanosomes Are A Model System For Functional Analysis Of Microbial Motility. In Nature Inspired Fluid Mechanics, edited by C.Tropea and H Bleckmann, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 119, 43 – 61.